
Case Study:
OT Security Analytics - Finding
the ground truth

In this Gravwell case study, we take a look at analyzing Industrial Control System data to detect
unauthorized manipulation of relays in a process.

The problem

The Gravwell Solution

Details Breakdown
Asset Discovery
OT Analytics

A Brief Modbus Primer
Status Requests
Change Requests

Gravwell OT Analytics

Final Thoughts

Try Gravwell Yourself

The problem
Industrial Control Systems (ICS) systems are integral parts of power plants, water and
wastewater treatment plants, oil and gas pipelines, as well as many other parts of critical
infrastructure. A security breach that takes all or part of the system offline can have far reaching
impacts, not just to the corporation or organization, but to local communities and potential
economic impacts. If a nuclear power plant, an oil pipeline, or a wastewater treatment plant is
compromised, there is high risk for negative environmental impact for many years.

We have seen attacks against ICS in the wild (most famously Stuxnet and the attacks against
the Ukranian power grid). Unfortunately, ICS systems are notoriously difficult to secure due to
an inverted security model, insecure by design protocols, and an incredibly long shelf life.
Situational Awareness can be difficult due to a historical divide of cybersecurity talent and
resources between Operational Technology and Information Technology (OT vs IT). The
Gravwell founders have their roots in this industry and know the problem well.

https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/
https://www.wired.com/story/russian-hackers-attack-ukraine/
https://www.tofinosecurity.com/blog/scada-security-basics-integrity-trumps-availability
http://www.digitalbond.com/blog/2012/01/19/project-basecamp-at-s4/
http://www.tofinosecurity.com/blog/scada-security-basics-why-are-plcs-so-insecure
https://en.wikipedia.org/wiki/Operational_Technology
https://gcn.com/articles/2012/09/20/inl-sophia-industrial-control-system-security-tool.aspx
https://securityweekly.com/2014/08/29/episode-385-interview-with-corey-thuen-and-ken-shaw/
https://www.blackhat.com/us-17/sponsored-sessions/Corey-Thuen.html

This case study focuses on a particular ICS process in which a relay is activated without the
operator being made aware via the process monitoring display. Losing control of the process is
the ultimate worst case scenario for any operator or ICS engineer. Further, forensics to detect
the extent of an attack are practically nonexistent -- logs from ICS equipment are very rare, let
alone security-specific information.

The Gravwell Solution
Gravwell was built to be flexible about how we ingest and process data. This enables us to go
places that most data analytics companies simply cannot. ICS systems often rely on lesser
known or proprietary binary protocols. The Gravwell pipeline analytics approach allows for
ingestion of any kind of data and then, at process time, intelligence is extracted at a low level
and built upon to create actionable intelligence.

With a worldwide shortage of cybersecurity talent, it was important for us to make the job easier
for everyone and to maximize the resources an organization does have. Gravwell visualizations
and dashboard displays are usable by non-technical personnel and operators. In the event of an
anomaly or incident requiring further investigation, the underlying data is always present and an
escalation up to a hunt team can go from tip to final solution without leaving Gravwell.

To solve the situational awareness problem and detect any activity altering the process we built
out a dashboard to show a breakdown of PLC write requests from the HMI (“authorized”) vs
those from alternate sources (“unauthorized”) along with some asset discovery. The authorized
activity is in the upper left chart and unauthorized in the upper middle with other charts for
monitoring the process. By displaying the information in this way, it becomes trivial to spot and
investigate unauthorized attempts to control the PLC.

Details Breakdown
This section covers a technical dive into everything that went into the analytics and discovery
for this problem, starting from nothing.

Asset Discovery
For the Gravwell analysis of the system, let's assume we know nothing about it and start off
with some asset discovery. We want to find out which systems are present on our network and
how they are talking. To get this data, we're feeding Gravwell a pcap of network activity from
these hosts in the control system. Alternatively, we could feed Gravwell via a span port and have
real-time and historical analysis of our process.

The first query we'll run is a basic chart of network activity:


```tag=scada packet ipv4.SrcIP | count by SrcIP | chart count by SrcIP limit 10``` 
 

Query Module  Purpose 

tag=scada  For this analysis we put all network traffic into a separate well called 
“scada”. This improves performance because searches that do not 
include the scada tag do not read those records for analysis. 
Gravwell best practices use tags as the first “filter” against different 
data types. 

packet ipv4.SrcIP  This invokes the packet module and extracts the Source IP address 

 

 



of all packets. 

count by SrcIP  Counting by Source IP address will condense the data for the final 
chart output. 

chart count by SrcIP limit 10  Finally we invoke the renderer which will chart the count of packets 
by IP address. We limit it to the top 10 IPs and everything else gets 
put in “other”. For this particular case study, our network capture only 
includes a few hosts. 

 
This gives us a quick and easy way to see who our biggest talkers are on this network. Looks 
like we've got .241 and .239 as our primary communicators. 
 
Let's build out some high level force directed graphs to get a handle on which machines are 
communicating and how. The following two force directed graphs are built out with similar 
queries. This first graph shows all servers on the network and the ports on which they 
communicate (this is a great query you probably want to bookmark). 
 

 
 
```tag=scada packet ipv4.SrcIP tcp.SrcPort ipv4.DstIP tcp.DstPort tcp.SYN==1 
tcp.ACK==1 | count by SrcIP,SrcPort | fdg SrcIP SrcPort```

Query Module Purpose

tag=scada packet ipv4.SrcIP
tcp.SrcPort ipv4.DstIP
tcp.DstPort tcp.SYN==1
tcp.ACK==1

The main difference between this and the previous network search is
here we are extracting some more values from the packets and
specifying that we are looking for the SYN and ACK flags to be set.
This is step 2 of the 3 step TCP handshake and will help us
determine which network services are being actively used.

count by SrcIP,SrcPort This count module uses two keys to create a condensed count on
the unique Source IP address and Port pairs

fdg SrcIP SrcPort This invokes the force directed graph renderer which creates the
node-link visuals weighted by the count we created in the previous
module

In this pcap excerpt, we observe a single service running at address .239 on port 502. If you're
familiar with SCADA protocols at all, you might recognize that as Modbus over TCP.

Let's build out a graph of server-client connections.


```tag=scada packet ipv4.SrcIP ipv4.DstIP tcp.DstPort | count by DstIP,DstPort | fdg 
-dg DstPort SrcIP DstIP``` 
 
Similar to the previous query, we are using force directed graphs to plot traffic between servers 
and clients. The darker the lines, the more traffic occurs between these nodes on the graph. We 
can see that .293 has had two clients connect to it, .241 and .242. This is expected given our 
earlier analysis. 

 

 



 
Network flows give us some rapid insight into what's happening. Now that we've figured out we 
have some server listening on port 502 and serving to one client at high frequency and another 
client infrequently, let's dive into analysis of the actual underlying process data. 
 

OT Analytics 
It looks like this process is using TCP Modbus for command and control. In summary, this 
protocol is used to find out if something is on or off and to tell things to turn on or off. 
 
Let's do a brief Modbus primer for those unfamiliar. Feel free to skip ahead if you're less 
interested in the underlying 1s and 0s. 
 

A Brief Modbus Primer 
Modbus is a communications mechanism created in 1979 for controlling PLCs. The Modbus 
protocol was originally designed for serial links and has gone through some changes over the 
years -- both in terms of the protocol and in general practical usage. This control system uses 
Modbus over TCP. For this analysis we're going to be doing some low level bit carving right in 
the Gravwell search pipeline to demonstrate that 1) Gravwell can get actual ground truth data 
about your running process and 2) Gravwell can work on ANY data, even proprietary 
undocumented protocols. 
 
Warning: incoming hex. 
 
Modbus over tcp has a fairly straightforward format. The header officially has 7 bytes (but 
actually 8 if you include the function code). It includes a 2 byte transaction number, two bytes of 
protocol (always 0 in our case here), two bytes of payload length, and one byte for the unit ID. 
 

 
 
This is an example of a Modbus over TCP packet. In this case, the transaction number is 0x14, 
the protocol is 0, the length is 6, and the unit is 1. The next byte is the function code, which 
determines what action the message requires. Let's go through the actions we're going to be 
seeing. 

 

 



Status Requests 
Requests for the current process status are done via modbus function code 1, which officially is 
"Read Discrete Output Coils" or in layman's terms, "Is this thing on or off?" The request message 
includes the "coil" address and the number of coils that are to be read and returned. This is an 
unused legacy capability as any requests in this control system are for single data points at a 
time. 
 
Looking at our example request hex again, the remaining message consists of a single byte 
function code, a two byte "coil address", and a two byte "read length" which allows requests of 
multiple coils. In this control system the read length is always 1 as requests for different coils 
are made separately. 
 
With the example hex from above, the function code is 1 and the coil address is 2001. 
 
Here is the response from the PLC: 

 
 
The PLC response is very basic and includes the common header format plus the modbus 
payload. The 0x1's are the unit ID, function code, length, and finally the actual data. So this 
message indicates a response that coil 2001 is currently set to 1 or "on". Note that the response 
does not contain the coil address, it is tied to the request via the transaction ID 

Change Requests 
Function code 1 is a "read" function code to get current status. Now we'll dive into the "write" 
function codes that are active in this system. Let's look at an example change request. 
 

 
 
Parsing out the message we see that the function code is 5, the address is 2001, and the data is 
0xFF00. 
 
The response from the server is simply an echo of this message. 
 

 

 



 
 
For posterity, let's look at the function 1 responses before and after this message. 
 
 

Before 
 

After 
   

 
The last byte changes from a 0 to a 1 as the write message goes through and alters the physical 
state of the process causing the relay to close. 

Gravwell OT Analytics 
Now that we've got a baseline understanding about what's happening under the hood in this 
process, let's get to the actual fun part -- analytics! Gravwell was built to be data agnostic, we 
can handle data of any kind be it logs, video, or control system protocols. For this analysis we'll 
use the built-in Gravwell Modbus protocol analysis. We'll leave the final bits of analytics up to 
Gravwell low-level byte slicing modules to demonstrate that Gravwell can handle ANY kind of 
protocol, be it a well defined standard or something unique and proprietary (which is not 
uncommon in Industrial Control Systems). 
 
Gravwell has a Modbus parsing agent built into the packet analyzer. This search shows all 
extracted Modbus fields: 
 

 

 



 
 
```tag=scada packet modbus.Function modbus.Unit modbus.Length modbus.Protocol 
modbus.Transaction modbus.Payload ipv4.SrcIP ipv4.DstIP | hexlify Payload | table
SrcIP DstIP Protocol Unit Transaction Length Function Payload```

Let's issue an initial search to determine which request function codes are actually in use on the
system and who is sending them.


```tag=scada packet modbus.Function modbus.Payload ipv4.SrcIP ipv4.DstIP 
tcp.DstPort==502 | hexlify Payload | count by SrcIP,Function | table SrcIP Function 
count``` 

 
 

Query Module  Purpose 

tag=scada packet 
modbus.Function 
modbus.Payload ipv4.SrcIP 
ipv4.DstIP tcp.DstPort==502 

We’re limiting the search to only packets with a destination port of 
502 (Modbus client->server communications). Then we’re extracting 
the Modbus Function and Payload values. 

hexlify Payload  This module simply converts binary data into its hexadecimal 
representation 

count by SrcIP,Function  Counting by Source IP address and Function code allows us to 
condense on this unique pair as a key value 

table SrcIP Function Count  Finally we render the data using the table renderer 

 
This query shows us that the only function codes in use are 1, 5, and 6 while also raising some 
suspicions. We can see .241 reading and occasionally writing to the PLC. The .242 address, 
however, never issues a read and only writes to the PLC with function code 6. 
 
Let's get to the bottom of this and search for all IPs writing to the PLC. 
 

 
 
```tag=scada packet ipv4.SrcIP tcp.DstPort==502 modbus.Function!=1 modbus.Payload | 
slice uint16be(Payload[1:3]) as coil | slice uint16be(Payload[3:5]) as value | hexlify
value | count by SrcIP,coil,value | table SrcIP coil value count```

Query Module Purpose

tag=scada packet ipv4.SrcIP
tcp.DstPort==502
modbus.Function!=1
modbus.Payload

This module invokes the packet parsing to extract necessary fields
and filters on traffic to the PLC and function codes other than the
read code of 1.

slice uint16be(Payload[1:3]) as
coil

The slice module is a very low binary module for extracting values
out of a byte stream. Slice requires a type argument, in this case
we’re extracting a 16 bit integer in big endian format. The argument
is the enumerated value (Payload is extracted in the previous
module) and the slice is from byte 1 (inclusive) to 3 (exclusive) -- we
extract bytes 1 and 2. Finally we create a new enumerated value out
of that data and call it ‘coil’.

slice uint16be(Payload[3:5]) as
value

Similarly to the previous module, this part of the pipeline extracts the
desired set value out of the Modbus payload.

hexlify value | count by
SrcIP,coil,value | table SrcIP
coil value count

The rest of the query is similar to others we have seen so far.
Massage the output, count by a merging of keys, and table the
results.

Looking at this chart it's clear to see that .242 is either a misconfigured system or an attacker
controlling the process. This kind of attack is often impossible to see from the process HMI
itself, unfortunately, due to limitations in the protocol and equipment. Extra analytics of the kind
that Gravwell provides are required.

Finally, let's take these queries and build out a dashboard that gives us full insight into what is
communicating with these ICS components and increase our situational awareness on who,
when, and how changes are being written to the PLC.

This dashboard provides a holistic view into everything that's interacting with our PLC. In this
case, we're only looking at a single PLC in a process. Altering the queries to monitor multiple
PLCs is straightforward.

For a final point, let's run a basic search and discover the ethernet MAC address belonging to
this system so we can lookup the specific switch and port in order to find the physical machine.

Gotcha! Thanks Gravwell.

Final Thoughts
This case study has walked through specifics for monitoring a PLC driving some power relays.
We started with asset discovery, built some specific queries for monitoring, and finally created a
dashboard for easy viewing if we want to revisit this type of information in the future. Using the

situational awareness gained from the data, we discovered a rogue or misconfigured system
interacting with our process and are prepared to hunt the specific switch and port to which the
MAC address belongs.

The power of Gravwell lies in its flexibility, both in it's capability and applicability. Gravwell can
hunt data of any kind in any environment and it's built to help your team do more. Gravwell can
be utilized by savvy cyber ninjas and operational technicians alike.

Try Gravwell Yourself
If you are interested in seeing the power that Gravwell can provide for your OT and IT teams,
contact us at info@gravwell.io for more information.

mailto:info@gravwell.io

