Case Study:
OT Security Analytics - Finding
Gravwell the ground truth

In this Gravwell case study, we take a look at analyzing Industrial Control System data to detect
unauthorized manipulation of relays in a process.

The problem

The Gravwell Solution

Details Breakdown

Asset Discovery
OT Analytics
A Brief Modbus Primer
Status Requests
Change Requests
Gravwell OT Analytics

Final Thoughts

Try Gravwell Yourself

The problem

Industrial Control Systems (ICS) systems are integral parts of power plants, water and
wastewater treatment plants, oil and gas pipelines, as well as many other parts of critical
infrastructure. A security breach that takes all or part of the system offline can have far reaching
impacts, not just to the corporation or organization, but to local communities and potential
economic impacts. If a nuclear power plant, an oil pipeline, or a wastewater treatment plant is
compromised, there is high risk for negative environmental impact for many years.

We have seen attacks against ICS in the wild (most famously Stuxnet and the attacks against
the Ukranian power grid). Unfortunately, ICS systems are notoriously difficult to secure due to
an inverted security model, insecure by design protocols, and an incredibly long shelf life.
Situational Awareness can be difficult due to a historical divide of cybersecurity talent and
resources between Operational Technology and Information Technology (OT vs IT). The
Gravwell founders have their roots in this industry and know the problem well.

O

https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/
https://www.wired.com/story/russian-hackers-attack-ukraine/
https://www.tofinosecurity.com/blog/scada-security-basics-integrity-trumps-availability
http://www.digitalbond.com/blog/2012/01/19/project-basecamp-at-s4/
http://www.tofinosecurity.com/blog/scada-security-basics-why-are-plcs-so-insecure
https://en.wikipedia.org/wiki/Operational_Technology
https://gcn.com/articles/2012/09/20/inl-sophia-industrial-control-system-security-tool.aspx
https://securityweekly.com/2014/08/29/episode-385-interview-with-corey-thuen-and-ken-shaw/
https://www.blackhat.com/us-17/sponsored-sessions/Corey-Thuen.html

This case study focuses on a particular ICS process in which a relay is activated without the
operator being made aware via the process monitoring display. Losing control of the process is
the ultimate worst case scenario for any operator or ICS engineer. Further, forensics to detect
the extent of an attack are practically nonexistent - logs from ICS equipment are very rare, let
alone security-specific information.

The Gravwell Solution

Gravwell was built to be flexible about how we ingest and process data. This enables us to go
places that most data analytics companies simply cannot. ICS systems often rely on lesser
known or proprietary binary protocols. The Gravwell pipeline analytics approach allows for
ingestion of any kind of data and then, at process time, intelligence is extracted at a low level
and built upon to create actionable intelligence.

With a worldwide shortage of cybersecurity talent, it was important for us to make the job easier
for everyone and to maximize the resources an organization does have. Gravwell visualizations

and dashboard displays are usable by non-technical personnel and operators. In the event of an
anomaly or incident requiring further investigation, the underlying data is always present and an

escalation up to a hunt team can go from tip to final solution without leaving Gravwell.

To solve the situational awareness problem and detect any activity altering the process we built
out a dashboard to show a breakdown of PLC write requests from the HMI (“authorized”) vs
those from alternate sources (“unauthorized”) along with some asset discovery. The authorized
activity is in the upper left chart and unauthorized in the upper middle with other charts for
monitoring the process. By displaying the information in this way, it becomes trivial to spot and
investigate unauthorized attempts to control the PLC.

= GRAVWELL admin &
PLC Writes from HMI Q @ PLC writes from Other Q @ PLC Writes by IP aQ =@
@Stacked OSteam OFxpanded X0 @002 ©2000 @®Saded OSiean OFspanded @00 92001 OGiouped @Siacked S10215053241 @19216863.242

1 1
9 s 9
8 8 8
7 7 7
5 5 5
4 4 4
3 3 3
2 2 2
: A i ’ BRI [l H |
. d MA A] moiin moi

o Coi A0 DAL 2017-10-25 10:5905 2017-10-25 1108:38
20171025 105419 2017-10.25 110357 2017-10.25 11:1325
PLC Writes a & PLC writes a @
Overview

sop ool value count

1
19216663241 2001 oot 2

5
19216863201 2001 o000 2

o Bl _EEE m W | I
192.168.63242 2000 o000 s 20171025 105320 20171025 111090
1921686321 2002 oo0if 1
19216863201 2000 ooif 1
192.168.63281 2002 000 1 e
19216863241 2000 o000 1

Details Breakdown

This section covers a technical dive into everything that went into the analytics and discovery
for this problem, starting from nothing.

Asset Discovery

For the Gravwell analysis of the system, let's assume we know nothing about it and start off
with some asset discovery. We want to find out which systems are present on our network and
how they are talking. To get this data, we're feeding Gravwell a pcap of network activity from
these hosts in the control system. Alternatively, we could feed Gravwell via a span port and have
real-time and historical analysis of our process.

The first query we'll run is a basic chart of network activity:

/ < Gravwell * \ 122

< C | A Notsecure | https;//localhost: 8080/ #/search/817051400 Ql e

= admin &

988 resats found between Oct 25, 2017 10:53:08 AM and Oct 25, 2017 11:10:41 AM (Searched 44.2k / 4.12 M8)

Zoomed View

Search
tag=scada packet ipvé.SrclP | count by SrclP | chart count by SrclP limit 10

a4,

] ‘ i

E

Overview
2 2
i IIIIIIIIIIlIIIIIIIIlIlIIIII|I|II||IIII|IIIIIII|II|IIIIII j
Al —_— L

10-25 10:53:20 2017-10-25 10:56:40 2017-10-25 L1:00:00 2017-10-25 11:03:20 2017-10-25 11:06:40 2017-1025 111000 017-10-25 10:53:20 2017-10-25 10:56:40 20171025 11:00:00 2017-10-25 11:03:20 2017-10-25 11:06:40 2017-10-25 11:10:00

a
01710

©19216563201 @10216863230 1021636330 @10216803238 @10210863242 @1021086321 @1921686342 @1921686320

200 /;_/\ — e e e . —— 7/\Vf//\/_/_,\ / \ﬁ\
wf] v

2017-10-25 1053:20 2017-10-25 105500 2017-1025 10:56:40 2017-10-25 105820 20171025 11:00.00 2017-10-25 11:01:40 2017-10-25 110320 2017-10-25 1L1:05:00 2017-10-251106:40 2017-10-25 11:08:20 2017-10-25

" tag=scada packet ipv4.SrcIP | count by SrcIP | chart count by SrcIP limit 10 "

Query Module Purpose

tag=scada For this analysis we put all network traffic into a separate well called
“scada”. This improves performance because searches that do not
include the scada tag do not read those records for analysis.
Gravwell best practices use tags as the first “filter” against different
data types.

packet ipv4.SrclP This invokes the packet module and extracts the Source IP address

X

of all packets.

count by SrclP Counting by Source IP address will condense the data for the final
chart output.

chart count by SrclP limit 10 Finally we invoke the renderer which will chart the count of packets
by IP address. We limit it to the top 10 IPs and everything else gets
put in “other”. For this particular case study, our network capture only
includes a few hosts.

This gives us a quick and easy way to see who our biggest talkers are on this network. Looks
like we've got .241 and .239 as our primary communicators.

Let's build out some high level force directed graphs to get a handle on which machines are
communicating and how. The following two force directed graphs are built out with similar
queries. This first graph shows all servers on the network and the ports on which they
communicate (this is a great query you probably want to bookmark).

— GRAVWELL

11 results found between Oct 25, 2017 10:49:51 AM and Oct 25, 2017 11:15:19 AM (Searched 44.2k / 4.12 MB)
Search

o tag=scada packet ipv4.SrcIP tcp.SrcPort ipv4.DstlIP tcp.DstPort tcp.SYN==1 tcp.ACK==1 | count by SrcIPSrcPort | fdg SrcIP

QOverview
10
5
0 N | N B B I B B -
2017-10-25 10:53:20 2017-10-25 11:01:40 2017-10-25 11:10:00

192.168.63.239

N

502

" “tag=scada packet ipv4.SrcIP tcp.SrcPort ipv4.DstIP tcp.DstPort tcp.SYN==
tcp.ACK==1 | count by SrcIP,SrcPort | fdg SrcIP SrcPort "

X

Query Module

Purpose

tag=scada packet ipv4.SrclP
tcp.SrcPort ipv4.DstIP
tcp.DstPort tcp.SYN==
tcp.ACK==

The main difference between this and the previous network search is
here we are extracting some more values from the packets and
specifying that we are looking for the SYN and ACK flags to be set.
This is step 2 of the 3 step TCP handshake and will help us
determine which network services are being actively used.

count by SrclIP,SrcPort

This count module uses two keys to create a condensed count on
the unique Source IP address and Port pairs

fdg SrclP SrcPort

This invokes the force directed graph renderer which creates the
node-link visuals weighted by the count we created in the previous
module

In this pcap excerpt, we observe a single service running at address .239 on port 502. If you're
familiar with SCADA protocols at all, you might recognize that as Modbus over TCP.

Let's build out a graph of server-client connections.

/ 0 Gravwell

& = C [A Notsecure | hups:/localhost 8080/ #/search/427958541

988 results found between Oct 25, 2017 10:53:08 AM and Oct 25, 2017 11:10:41 AM (Searched 44.2k / 412 MB) Zoomed View

° tag=scada packet ipv4.SrclP ipv4.DstIP tep.DstPort | count by DstiPDstPort | fdg -dg DstPort SrelP D:

Overview

o WA

@® 192.168.63.239

192.168.63.242

192.168.63.241

b

' “tag=scada packet ipv4.SrcIP ipv4.DstIP tcp.DstPort | count by DstIP,DstPort | fdg

-dg DstPort SrcIP DstIP °°

Similar to the previous query, we are using force directed graphs to plot traffic between servers
and clients. The darker the lines, the more traffic occurs between these nodes on the graph. We
can see that .293 has had two clients connect to it, .241 and .242. This is expected given our

earlier analysis.

X

Network flows give us some rapid insight into what's happening. Now that we've figured out we
have some server listening on port 502 and serving to one client at high frequency and another
client infrequently, let's dive into analysis of the actual underlying process data.

OT Analytics

It looks like this process is using TCP Modbus for command and control. In summary, this
protocol is used to find out if something is on or off and to tell things to turn on or off.

Let's do a brief Modbus primer for those unfamiliar. Feel free to skip ahead if you're less
interested in the underlying 1s and Os.

A Brief Modbus Primer

Modbus is a communications mechanism created in 1979 for controlling PLCs. The Modbus
protocol was originally designed for serial links and has gone through some changes over the
years -- both in terms of the protocol and in general practical usage. This control system uses
Modbus over TCP. For this analysis we're going to be doing some low level bit carving right in
the Gravwell search pipeline to demonstrate that 1) Gravwell can get actual ground truth data
about your running process and 2) Gravwell can work on ANY data, even proprietary
undocumented protocols.

Warning: incoming hex.
Modbus over tcp has a fairly straightforward format. The header officially has 7 bytes (but

actually 8 if you include the function code). It includes a 2 byte transaction number, two bytes of
protocol (always 0 in our case here), two bytes of payload length, and one byte for the unit ID.

00 do c9 a6 92 fa d8 eb 97 bd 14 9d 08 00 45 G0 E

00 34 5e fb 40 00 40 06 da 97 ce a8 3f f1 ce a8 .41.@.@.?...

B 2T ef T2 3b 81 76 bh @96 2c 72 fc de: 5d 7F 58 3B Pucjo c x5] <P

0030 ff ff 6f 09 00 00 ..o. . . N
0040 [EHEH - -]

This is an example of a Modbus over TCP packet. In this case, the transaction number is 0x14,
the protocol is 0, the length is 6, and the unit is 1. The next byte is the function code, which
determines what action the message requires. Let's go through the actions we're going to be
seeing.

Status Requests

Requests for the current process status are done via modbus function code 1, which officially is
"Read Discrete Output Coils" or in layman's terms, "Is this thing on or off?" The request message
includes the "coil" address and the number of coils that are to be read and returned. This is an
unused legacy capability as any requests in this control system are for single data points at a
time.

Looking at our example request hex again, the remaining message consists of a single byte
function code, a two byte "coil address", and a two byte "read length" which allows requests of
multiple coils. In this control system the read length is always 1 as requests for different coils
are made separately.

With the example hex from above, the function code is 1 and the coil address is 2001.

Here is the response from the PLC:

d8 eb 97 bd 14 9d 0 d0 <¢9 a6 92 fa 08 00 45 @0 E.
0010 00 32 c2 99 00 00 40 66 b6 fb co a8 3f ef coO a8 2@ L7
3f f1 01 f6 f2 3b fc de 5d 7f bb 96 2c 7e 50 18 - S-S W -

0030 ©6b 68 6a 6a 00 00 CCIFYIECICCICCICACICCNCE hij. .l

The PLC response is very basic and includes the common header format plus the modbus
payload. The 0x1's are the unit ID, function code, length, and finally the actual data. So this
message indicates a response that coil 2001 is currently set to 1 or "on". Note that the response
does not contain the coil address, it is tied to the request via the transaction ID

Change Requests

Function code 1 is a "read" function code to get current status. Now we'll dive into the "write"
function codes that are active in this system. Let's look at an example change request.

00 do c9 a6 92 fa 00 Ge c6 88 5a 81 08 00 45 00 T -
J010 00 34 4c T3 40 00 40 06 ec 9f co a8 3f f1 co a8 .4L.@.@.?...
0020 3f ef f2 3b @1 f6 bb 97 f8 ce fc df dd 27 50 18 2..;.... P,
0030 ff ff 23 al 00 00 .+ . [
0040 [HillEE &l

Parsing out the message we see that the function code is 5, the address is 2001, and the data is
0xFFO0O0.

The response from the server is simply an echo of this message.

X

OOOG OO e c6 88 5a 81 OO0 d0@ c9 a6 92 fa 08 00 45 00 sy lae w canmse s m E.

0010 00 34 e9 1b 00 00 40 06 90 77 cO a8 3f ef cO a8 AL..@. ow.L?. .
poozeo 3f f1 01 fe f2 3b fc df dd 27 bb 97 f8 da 50 18 e JS- SRS T -
0030 b 68 18 2d 60 00 b K
0040 o

For posterity, let's look at the function 1 responses before and after this message.

Before 0 6f 0O 00 0O A4 A1 01 01 00

After PO 73 00 00 0O 04 01 01 01 01

The last byte changes from a 0 to a 1 as the write message goes through and alters the physical
state of the process causing the relay to close.

Gravwell OT Analytics

Now that we've got a baseline understanding about what's happening under the hood in this
process, let's get to the actual fun part - analytics! Gravwell was built to be data agnostic, we
can handle data of any kind be it logs, video, or control system protocols. For this analysis we'll
use the built-in Gravwell Modbus protocol analysis. We'll leave the final bits of analytics up to
Gravwell low-level byte slicing modules to demonstrate that Gravwell can handle ANY kind of
protocol, be it a well defined standard or something unique and proprietary (which is not
uncommon in Industrial Control Systems).

Gravwell has a Modbus parsing agent built into the packet analyzer. This search shows all
extracted Modbus fields:

0 Gravwell x (o0 Gravwell =

& c |‘ Not secure | hitps://localhost:8080/#/search/373657374 w
GRAVWELL
29084 results found between Oct 25, 2017 10:49:51 AM and Oct 25, 2017 11:15:19 AM (Searched 44 7k / 412 MB) Zoomed View []
Search
540
° tag=scada packet modbus.Function modbus.Unit modbus. Length modbus. Protocel modbus. Transaction modbus Payload 500
100
Overview 3
770,
200|
500
100
I I I
2017.10.25 105320 2017-10.25 11:01:40 2017.10.25 11:10:00 2017-10.25 105320 2017.10.26 11:01:40 2017.10.25 11:10:00
SrelP DstiP Protocol Unit Transaction Length Function Payload
19216863 241 192.168.63.230 [1 1 6 1 0107000001
192.168.63.239 192.168.63.241 o 1 13 a 1 010100
192.168.63.241 192.168.63.239 o 1 12 6 1 0107d20001
19216863239 192.168.63.241 o 1 258 4 1 o100
192.168.63.241 192.168.63.239 o 1 1 6 1 0107d00001
192.168.63 239 192.168.63.241 o 1 1 a 1 010100
1921168.63.239 192.168.63.241 0 1 [l 1 1 010100
192.168.63.241 192.168.63.239 o 1 n 6 1 0107410001
19216863239 192.168.63.241 o 1 n a 1 010101
192.168.63.241 192.168.63.239 o 1 5 6 1 0107d10001

tag=scada packet modbus.Function modbus.Unit modbus.Length modbus.Protocol
modbus.Transaction modbus.Payload ipv4.SrcIP ipv4.DstIP | hexlify Payload | table

SrcIP DstIP Protocol Unit Transaction Length Function Payload

Let's issue an initial search to determine which request function codes are actually in use on the
system and who is sending them.

0 Gravwell x (o0 Gravwell Oy

€ C | A Notsecure | bitpsi//localhost:8080/#/search/319294437 #

GRAVWELL

1000 results found between Oct 25, 2017 10:49:51 AM and ct 25, 2017 11:15:19 AM {Searched 44 2k / 412 MB) Zoomed View
Search

o tag=scada packet modbus.Function modbus Payload ipv4.SrclP ipv4.DstiP tcp.DstPort==502 | hexlify Payload | count by Sic

15
Overview
B
L m I I I I
2017-10-25 10:53:20 2017-10-25 11:01:40 2017-10-25 11:10:00 117-10-25 11:01:40

2017-10.25 1055320 20) 2017-10-25 11:10.00

5

seclP Function count
192.168.63.241 1 14523
192,168.63.241 s 8
192.168.63.242 6 9

' “tag=scada packet modbus.Function modbus.Payload ipv4.SrcIP ipv4.DstIP
tcp.DstPort==502 | hexlify Payload | count by SrcIP,Function | table SrcIP Function
count " °

Query Module Purpose

tag=scada packet We're limiting the search to only packets with a destination port of
modbus.Function 502 (Modbus client->server communications). Then we're extracting
modbus.Payload ipv4.SrclP the Modbus Function and Payload values.

ipv4.DstlIP tcp.DstPort==502

hexlify Payload This module simply converts binary data into its hexadecimal
representation

count by SrclP,Function Counting by Source IP address and Function code allows us to
condense on this unique pair as a key value

table SrclP Function Count Finally we render the data using the table renderer

This query shows us that the only function codes in use are 1, 5, and 6 while also raising some
suspicions. We can see .241 reading and occasionally writing to the PLC. The .242 address,
however, never issues a read and only writes to the PLC with function code 6.

Let's get to the bottom of this and search for all IPs writing to the PLC.

= GRAVWELL admin &
17 results found between Oct 25, 2017 10:56:41 AM and Oct 25,2017 11:10:09 AM (Searched 35,8k / 3.32 MB)

Zoomed View

Search
o tag=scada packet ipv4.SrciP tcp. DstPort==502 modbus.Function!=1 modbus.Payload | slice uint16be(Payload[1:3]) as coil |

Overview 8

- == = w 0 " 11 (168 I ot 198 |

=
2017-10-25 11:00:00 2017-10-25 11:03:20 20171025 11:06:40 2017-10-25 11:10 2017-10-25 11:00:00 2017-1025 11:03:20 2017-10-25 11:06:40 2017-10-25 11:1

StclP col count
192.168.63.241 2001 ooff 2
192.168.63.241 2001 0000 2
192.168.63.242 2000 0000 4
192.168.63.241 2000 ooff 1
192.168.63.241 2002 aoff 1
192.168.63.241 2002 0000 1
192.168.63.241 2000 0000 1

192.168.63.242 2001 0000 5

'’ tag=scada packet ipv4.SrcIP tcp.DstPort==502 modbus.Function!=1 modbus.Payload |
slice uintlébe (Payload[1:3]) as coil | slice uintlébe (Payload[3:5]) as value | hexlify
value | count by SrcIP,coil,value | table SrcIP coil value count’ '~

X

Query Module

Purpose

tag=scada packet ipv4.SrcIP
tcp.DstPort==502
modbus.Function!=1
modbus.Payload

This module invokes the packet parsing to extract necessary fields
and filters on traffic to the PLC and function codes other than the
read code of 1.

slice uint16be(Payload[1:3]) as
coil

The slice module is a very low binary module for extracting values
out of a byte stream. Slice requires a type argument, in this case
we're extracting a 16 bit integer in big endian format. The argument
is the enumerated value (Payload is extracted in the previous
module) and the slice is from byte 1 (inclusive) to 3 (exclusive) - we
extract bytes 1 and 2. Finally we create a new enumerated value out
of that data and call it ‘coil’.

slice uint16be(Payload[3:5]) as
value

Similarly to the previous module, this part of the pipeline extracts the
desired set value out of the Modbus payload.

hexlify value | count by
SrclP,coil,value | table SrcIP
coil value count

The rest of the query is similar to others we have seen so far.
Massage the output, count by a merging of keys, and table the
results.

Looking at this chart it's clear to see that .242 is either a misconfigured system or an attacker
controlling the process. This kind of attack is often impossible to see from the process HMI
itself, unfortunately, due to limitations in the protocol and equipment. Extra analytics of the kind
that Gravwell provides are required.

Finally, let's take these queries and build out a dashboard that gives us full insight into what is
communicating with these ICS components and increase our situational awareness on who,
when, and how changes are being written to the PLC.

= GRAVWELL admin &

PLC Writes from HMI a @ PLC writes from Other Q& PLC Writes by IP Q&
@siackes Ostream O Expanded el @200z w200 @siacked Qsweam OExpanded 020 @200 OGiuped @stacked ©1921663201 @102168.63.242
10 10

9 9 9)

8 8 8

7 7 7

8 6 8|

5 5 5

4 4 4

3 3 3

2 2 2

1 1 1 | |

! d A s . 0wl

2017-10.25 105320 2017-10.25 11:1000 2017-10.25 105320 2017-102511:10:00 T ST
2017-10-25 10:54:19 2017-10-25 11:03:52 2017-10-25 11:13:25
PLC Writes a @ PLC writes Q L
Overview
SrelP coll value count
10
192.168.63.241 2001 ooff z
5
192.168.63.241 2001 0000 z
M ——— B)

192.168.63.242 2000 0000 4 2017-10-25 10:53:20 2017-10-25 11:10:00
192.168.63.241 2002 ooff 1

192.168.63 241 2000 ooff. 1

192168.63 241 2002 0000 1 °
192.168.63.241 2000 0000 1

This dashboard provides a holistic view into everything that's interacting with our PLC. In this
case, we're only looking at a single PLC in a process. Altering the queries to monitor multiple
PLCs is straightforward.

For a final point, let's run a basic search and discover the ethernet MAC address belonging to
this system so we can lookup the specific switch and port in order to find the physical machine.

= GRAVWELL admin &

59 results found between Oct 25, 2017 10:49:51 AM and Oct 25, 2017 11:15:19 AM (Searched 44.2k / 4.12 MB) Zoomed View
Search

Search
o tag=scada packet ipv4.SrcIP==192.168.63.242 eth.SrcMAC | table SrcIP SreMAC

8
Overview 6
B
A
. - I.I.I.I.I. l. . 1 il 1
2017-10-25 10:53:20 2017-10-25 11:01:40 2017-10-25 11:10:00 2017-10-25 10:53:20 2017-10-25 11:01:40 2017-10-25 11:10:00
192.168.63.242 00:0e:c6:88:52.81

Gotchal Thanks Gravwell.

Final Thoughts

This case study has walked through specifics for monitoring a PLC driving some power relays.
We started with asset discovery, built some specific queries for monitoring, and finally created a
dashboard for easy viewing if we want to revisit this type of information in the future. Using the

X

situational awareness gained from the data, we discovered a rogue or misconfigured system
interacting with our process and are prepared to hunt the specific switch and port to which the
MAC address belongs.

The power of Gravwell lies in its flexibility, both in it's capability and applicability. Gravwell can
hunt data of any kind in any environment and it's built to help your team do more. Gravwell can
be utilized by savvy cyber ninjas and operational technicians alike.

Try Gravwell Yourself

If you are interested in seeing the power that Gravwell can provide for your OT and IT teams,
contact us at info@gravwell.io for more information.

mailto:info@gravwell.io

